
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2009, Article ID 710971, 14 pages
doi:10.1155/2009/710971

Review Article

Challenges and Improvements in Distributed Software
Development: A Systematic Review

Miguel Jiménez,1 Mario Piattini,2 and Aurora Vizcaı́no2

1 Alhambra-Eidos, Technology Innovation Center, Paseo de la Innovación 1, 02006 Albacete, Spain
2 Alarcos Research Group, Institute of Information Technologies & Systems, Escuela Superior de Informática,
University of Castilla-La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain

Correspondence should be addressed to Miguel Jiménez, miguel.jimenez@a-e.es

Received 12 November 2008; Accepted 6 March 2009

Recommended by Hossein Saiedian

Distributed Software Development (DSD) has recently evolved, resulting in an increase in the available literature. Organizations
now have a tendency to make greater development efforts in more attractive zones. The main advantage of this lies in a greater
availability of human resources in decentralized zones at less cost. There are, however, some disadvantages which are caused
by the distance that separates the development teams. Coordination and communication become more difficult as the software
components are sourced from different places, thus affecting project organization, project control, and product quality. New
processes and tools are consequently necessary. This work presents the findings of a systematic review of the literature related
to the challenges concerning Distributed Software Development, whose purpose is to identify the solutions and improvements
proposed up to the present day.

Copyright © 2009 Miguel Jiménez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Recent years have seen the geographic distribution of
software development. The software industry now tends
to relocate its production units in decentralized zones in
which a skilled workforce is more readily available, thus
taking advantage of political and economic factors [1]. The
main objective of this is to optimize resources in order
to develop higher quality products at a lower cost than
that of colocated developments. Software Factories [2] are
therefore organizational structures which automate parts of
software development by imitating those industrial processes
that were originally linked to more traditional sectors
such as those of the automobile and aviation industries,
decentralize production units, and promote the reusability
of architectures, knowledge and components.

Distributed Software Development (DSD) allows team
members to be located in various remote sites during the
software lifecycle, thus making up a network of distant
sub-teams. In some cases, these teams may be members
of the same organization; in other cases, collaboration
or outsourcing involving different organizations may exist.

Traditional face-to-face meetings are, therefore, no longer
common, and interaction between members requires the use
of technology to facilitate communication and coordination.
Although this phenomenon began in the 90s, only during
the last ten years has its strategic importance been recognized
[3], and related studies are very recent [4].

The distance between the different teams can vary
from a few meters (when the teams work in adjacent
buildings) to different continents [5]. The situation in which
the teams are distributed beyond the limits of a nation
is called Global Software Development (GSD) [6]. This
kind of scenario is interesting for several reasons, mainly
because it enables organizations to abstract themselves
from geographical distance, whilst having qualified human
resources and minimizing cost [7], thus increasing the
market area by producing software for remote clients and
obtaining a longer workday by taking advantage of time
differences [8]. However, a number of problems [9], caused
mainly by distance, time, and cultural differences [10], must
be confronted, and these depend largely on the specific
characteristics of each organization.

2 Advances in Software Engineering

In this context, “offshoring” refers to the transfer of
an organizational function to another country, usually
one in which human resources are cheaper. We refer to
“nearshoring” when jobs are transferred to geographically
closer countries, thus avoiding cultural and time differences
between members and saving travel and communication
costs. Outsourcing is a mean to contract an external organi-
zation, independently of its location, rather than developing
in-house [11].

The aforementioned development practices have as a
common factor both the problems arising from distance
that directly affect the processes of communication and
coordination, and control activities [12]. In these envi-
ronments, communication is less fluid than in colocalized
development groups, and problems related to coordination,
collaboration, or group awareness therefore appear which
negatively affect productivity and, consequently, software
quality. These factors all influence the way in which software
is defined, built, tested, and delivered to customers, thus
affecting the corresponding stages of the software life cycle.

In order to mitigate these effects, and with the aim
of achieving higher levels of productivity, organizations
require new technologies, processes, and methods [13]
through improvements related to the software life cycle,
project planning, estimations, risks management, quality
assurance, infrastructures, team skills, and the division of
responsibilities with the aim of supporting collaboration,
coordination, and communication among developers [14].
Iterative approaches are commonly used in contrast to
traditional waterfall or sequential methods but these become
more difficult to use consistently when teams are geographi-
cally distributed [15].

The Model Driven Development (MDD) approach is
currently emerging in this field, providing reusability, main-
tainability, interoperability, and adaptability through differ-
ent languages and platforms, and improving software quality
and developers’ productivity. Model Driven Architecture
(MDA) [16] is the most frequently adopted MDD standard
and provides concepts of separation in individual models
and transformation techniques.

Reference [17] discusses the main ideas with regard to
how MDA can be used within a collaborative environment
to assist interenterprise business processes by using tools
that are able to take several input models and produce
different kinds of outputs. One representative example
of the application of this approach is presented in [18]
with a proposal for modeling enterprise organization and
developing groupware applications under a concrete MDA-
based development process, thus improving communication,
collaboration, and coordination between distributed actors.
Tools such as InterDOC [19] also exists, which serve as an
example of the power of the approach to enable the authoring
process when interoperability among different collaborative
applications is necessary.

This work presents a systematic review of the literature
dealing with efforts related to DSD and GSD with the
purpose of discovering the aspects upon which researchers
have focused until this moment, thus allowing us to analyze
the issues and the solutions which have been contributed up

to the present through information of a highly scientific and
practical value.

The paper is organized as follows. Section 2 describes
the systematic review procedure applied and the results
obtained. Section 3 presents an analysis of the results pre-
sented in the previous section. The issues and solutions
found relating to DSD and GSD are explained in Section 4.
The main success factors necessary to carry out a distributed
development are listed in Section 5. Finally, Section 6 pro-
vides some concluding remarks.

2. Systematic Review Procedure

A systematic review of literature [20] permits the identi-
fication, evaluation, and interpretation of all the available
relevant studies related to a particular research question,
topic area or phenomenon, thus providing results of a high
scientific value by classifying studies into primary studies
and secondary or relevant studies, by means of synthesizing
existing work according to a predefined strategy.

This systematic review has been carried out within the
context of the FABRUM project, whose main objective is
the development of a process with which to manage the
relationships between a planning and design center and a
software production factory, this work serves as a starting
point upon which to focus future research.

We have followed the systematic search procedure pro-
vided by Kitchenham [20], and the selection of primary
studies method followed in [21].

2.1. Question Formularization. The research question that
guided this systematic review was:

What are the initiatives carried out in relation to the
improvement of DSD processes?

The keywords that guided the search to answer the
research question were: distributed, software, development,
global, enterprise, organization, company, team, offshore, off-
shoring, outsource, outsourcing, nearshore, nearshoring, model,
strategy, and technique.

The ultimate goal of this systematic review consists
of identifying the best procedures, models, and strategies
employed, and to determine the most important improve-
ment factors for the main problems found. The population
will be composed of publications found in the selected
sources which apply procedures or strategies related to DSD.

2.2. Sources Selection. The search strings (shown in Table 1)
were established by combining the keyword list from the
previous section through the logical connectors “AND” and
“OR”.

The studies were obtained from the following search
sources: Science@Direct (http://www.sciencedirect.com),
Wiley Interscience (http://www.interscience.wiley.com), IEEE
Digital Library (http://www.computer.org), and ACM Digital
Library (portal.acm.org/dl.cfm). The quality of these sources
guarantees the quality of the studies. The basic search chains
had to be adapted to the search engines of each source.

Advances in Software Engineering 3

Table 1: Basic search strings.

Basic search strings

1

(“distributed software development” OR “global
software development”) AND ((enterprise OR
organization OR company OR team) AND
(offshore OR offshoring OR outsource OR
outsourcing OR nearshore OR nearshoring)

2
(“distributed software development” OR “global
software development”) AND (model OR strategy
OR technique)

2.3. Studies Selection. The inclusion criteria for determining
whether a study should be considered relevant (a potential
candidate to become a primary study) were based on
analyzing the title, abstract, and keywords from the studies
retrieved by the search to determine whether they dealt
with DSD as regards being orientated towards process
improvement, quality, coordination, collaboration, commu-
nication, and related issues that carry out any improvement
concerning the subject in question. In some cases it was
necessary to read the entire document to determine its
relevance.

After analyzing the results of the first iteration of the
systematic review, we applied exclusion criteria to obtain
the primary studies, excluding those studies which, despite
addressing the issue of DSD, did not contribute to any signif-
icant improvement method. We also dismissed those studies
which focused solely upon social issues, cultural or time
differences or focused solely upon free software, although
other papers that address these topics in a secondary manner
have been taken into consideration.

The search procedure produced 768 initial studies, of
which 497 were not repeated. 170 of these were selected as
being relevant, and 78 were selected as primary studies (the
complete list of primary studies is shown in the appendix.
Table 2 shows the distribution of studies found according to
the sources used.

2.4. Information Extraction. The process of extracting infor-
mation from the primary studies followed an inclusion
criterion based on obtaining information concerning the key
success factors, improvement strategies employed, processes
improved and the most important ideas in each study, thus
establishing a categorization between objective and subjec-
tive results. All articles were categorized by paying close
attention to the methodological study followed according to
the models presented in [22]; these categorizations are as
follows:

(i) case studies,

(ii) literature reviews,

(iii) experiments,

(iv) simulations,

(v) surveys.

The nonexperimental model for studies (which makes a
proposal without testing it or performing experiments) was
also applied.

Information corresponding to a specific template
(including the type of study, methodology employed,
affected processes, and a description of the approach)
was extracted from each paper selected for analysis, with
particular attention being paid to the problems dealt with
and the solutions contributed.

3. Trends in Distributed Software
Development Research

This section analyzes and discusses the content of the pri-
mary studies found in order to extract relevant information.

Figure 1(a) shows that the majority of the primary
studies analyzed are case studies and experimental papers.
Nonexperimental studies and surveys in which members
involved in the development take part in outlining their
difficulties have a significant representation.

However, as Figure 1(b) shows, the majority of primary
studies are focused upon the business field but studies in
the university environment also appear in which groups of
students carried out developments in different locations.
38% of the studies did not indicate their field of work or
their classification was not applicable owing to the nature of
the study, while 6% were from organizations which did not
specify their corporate or university environment.

3.1. Publications Tendency. After concentrating on the num-
ber of relevant studies found through the systematic search
carried out, it can be concluded that the subject of DSD is
evidently an area which was not widely studied until a few
years ago, and that it is only recently that a greater number
of publications have appeared; thus, as Figure 2 shows, 2006
is the year in which by far the greatest number of studies was
published, bearing in mind that the data shown for 2008 only
reflects the studies found before September of that year.

3.2. Standards Employed. Figure 3 presents the standards
addressed by the articles analyzed. Based on the available
data, it may be inferred that few studies indicate the use
of specific standards. In part, this is attributable to the fact
that the vast majority of studies deal with issues such as
communication difficulties in which the standard used is not
of importance. The standards supported by most primary
studies are CMM, CMMI, and ISO 9001; it is common to
jointly apply both. The majority of the studies which applied
CMM and CMMI employed a maturity level of 2.

3.3. Improved or Analyzed Processes. Taking the primary
studies analyzed as a reference, we carried out a classification
in terms of processes in the software life cycle to which
improvements were proposed or success factors or areas
to be improved related to DSD were discussed. Primary
studies were classified according to the improved or studied
processes, in each case based on the ISO/IEC 12207 standard
[23], with the aim of obtaining a vision of the process

4 Advances in Software Engineering

Table 2: Distribution of studies found.

Studies

Sources Search date Found Not repeated Relevant Primaries %

Science@Direct 15/08/2008 175 143 53 19 23,8

Wiley InterScience 27/09/2008 30 20 17 13 16,3

IEEE Digital Library 17/08/2008 66 49 19 14 18,8

ACM Digital Library 16/08/2008 497 355 80 32 41,3

Total — 768 567 170 78 100,0

Non-experimental
12%

Survey
9%

Simulation
2%

Experiment
27%

Case studies
47%

Literature review
5%

(a)

Not
applicable

38% Enterprise
40%

Organization
(without specifying)

6%
University

16%

(b)

Figure 1: Type of articles analyzed (a), and environments of study development (b).

0
10

20
30

40
50

60

N
u

m
be

r
of

st
u

di
es

2000 2001 2002 2003 2004 2005 2006 2007 2008

Years

Publications by year

Figure 2: Trends in publications concerning DSD.

CMMI

CMM

Other ISO

ISO 12207

ISO 9001

ISO 15504

COPC

St
an

da
rd

s

0 2 4 6 8 10

Number of articles

Figure 3: Standards employed in the studies.

life cycle that requires special attention when working in a
distributed environment, and discovering the improvement
efforts carried out until that moment.

The ISO 12207 standard establishes the activities that
may be carried out during the software life cycle, which are
grouped into main processes, support processes, and general
processes. The results are presented graphically in Figure 4,
which indicates frequency in function of the number of
studies that address each process.

The results obtained indicate that greater efforts are
focused on human resources, organizational management,
infrastructure, organizational alignment, and project man-
agement. From these data we can infer that communication
between team members is a critical factor. Most of the studies
are centered on the organizational processes, and we thus
believe that there is a need for more studies focused on the
level of projects and technical aspects.

3.4. Contents of the Studies. Table 3 provides a schematic
representation of the lines towards which the primary studies
have focused. Most of the works study tools or models
designed specifically for DSD which attempt to improve
certain aspects related to development and coordination.
Another large part of the studies are related to communi-
cation processes and the integration of collaborative tools,
combining tools such as e-mail or instant messaging, and
studying their application by means of different strategies.
Most of the studies address the subject of communication
difficulties in at least a secondary manner, presenting this
aspect as being one of the most important in relation to the
problematic nature of DSD.

Advances in Software Engineering 5

Improved processes

O
rg

an
iz

at
io

n
al

 l
if

e
cy

cl
e

pr
oc

es
se

s
Su

pp
or

ti
n

g
lif

e
cy

cl
e

pr
oc

es
se

s
P

ri
m

ar
y

lif
e

cy
cl

e
pr

oc
es

se
s

Maintenance

Management process
Organizational alignment

Organizational management

Project management
Quality management

Risk management
Measurement
Infrastructure

Acquisition
Supply

Development
Requirements elicitation

System requirements analysis
System architectural design

Software requirements analysis
Software design

Software construction

Software installation
Operation

Software integration
 Software testing

System integration
System testing

Configuration management
Quality assurance

Verification
Validation

Joint review

Documentation

Problem resolution management
Usability

Product evaluation
Change request management

Asset management
Reuse program management

Domain engineering

Improvement
Human resource management

Audit

0 4 8 12 16 20

Number of articles

Figure 4: Processes improved or analyzed by the primary studies adjusted to ISO 12207.

Table 3: Thematic areas dealt with in the primary studies.

Thematic areas Studies (%)

Process control, task scheduling, and project
coordination

43.5

Collaborative tools, techniques, and frameworks 35.9

Configuration management 5.4

Multiagent systems 4.3

Knowledge management 7.6

Defects detection 2.2

Test management 1.1

4. Challenges and Improvements

In this section, we synthesize the challenges and proposed
improvements identified through the systematic review,
discussing the main subjects.

4.1. Communication. The software life cycle requires a great
deal of communication between those members involved
in the development who exchange a large amount of
information through different tools and different formats
without following communication standards, and who thus
face misunderstandings and high response times. These
drawbacks, combined with the complex infrastructure and
the great size of personal networks which change over time,
are summarized in a decrease in communication frequency
and quality, which directly affects productivity. In order to
decrease these effects, both methodologies and processes
must be supported by collaborative tools, which are a means
of avoiding ambiguity and face-to-face meetings without
comprising the quality of the results, as is proposed by M. A.
Babar et al. [PS56]. K. Mohan and B. Ramesh [PS40] discuss
the need for user-friendly tools, and integrate collaborative
tools and agents to improve knowledge integration. M. R.
Thissen et al. [PS70] examine communication tools and

6 Advances in Software Engineering

describe collaboration processes, dealing with techniques
such as conference calls and e-mail.

Cultural differences imply different terminologies which
may cause mistakes in messages and translation errors.
Different levels of understanding of the problem domain
also exist, as do different levels of knowledge, skills, and
training between teams. The use of translation processes and
codification guidelines is therefore useful [PS6].

Requirements should also be clearly defined and modeled
in order to make them easily understood, and dependencies
among modules should be identified in the architecture.
G. N. Aranda et al. [PS34] propose a technique with
which to reduce communication problems in the process of
requirements elicitation by selecting a suite of groupware
tools and techniques from the field of cognitive psychology.

The security of communications must also be taken into
account. All the members involved must be able to work
with several tools, and the human factor takes on more
importance; the team members’ communication skills are a
critical factor.

4.2. Group Awareness. Members of a virtual team tend to be
less productive due to feelings of isolation and indifference.
Literature deals with the poor socialization and sociocultural
differences which cause a lack of trust [PS39]. Developers
need to have as much information as possible at their
disposal, and to know the full status of the project and
its past history, which will in turn allow them to create
realistic assumptions about the project. Frequent changes
in processes, lack of continuity in communications, and
lack of collaborative tool integration cause remote groups
to be unaware of what is important because they do not
know what other people are working on. As a consequence,
they cannot find the right person and/or timely information
which will enable them to work together efficiently, resulting
in misalignment, replanning, redesign, and rework.

M. A. D. Storey et al. [PS65] propose a framework for
the comparison and understanding of visualization tools
that provides awareness of software development activi-
ties, giving a solid grounding to the existing theoretical
foundation of the field. Augur [PS14] similarly describes a
visualization tool which supports DSD processes by creating
visual representations of both software artefacts and software
development activities, thus allowing developers to explore
the relationships between them.

J. D. Herbsleb et al. [PS26] present a tool which provides
a visualization of the changing management system, thus
making it easy to discover who has experience in working on
which parts of the code, and to obtain contact information
for that person. In the same line, R. Holmes and R. J.
Walker [PS25] present the YooHoo awareness system to
help developers to keep apprised of code changes, providing
notifications in a flexible manner.

Apart from using these tools, the development process
must also be adapted to provide the team members with a
better awareness of the project status. It must therefore be
automated to provide notifications of actions and decisions
to the roles involved.

4.3. Software Configuration Management. Distributed envi-
ronments present problems derived from conflicts related
to source code control. Coordination and synchronization
become more complex as the degree of distribution of
the team grows, and traceability is a critical factor. Source
control systems must support access through Internet, thus
confronting its unreliable and insecure nature and the higher
response times.

To reduce these drawbacks, S. E. Dossick and G. E.
Kaiser [PS11] propose CHIME, an Internet- and Intranet-
based application which allows users to be placed in a
3D virtual world representing the software system. Users
interact with project artifacts by “walking around” the virtual
world, in which they collaborate with other users through
a feasible architecture. B. Al-Ani et al. [PS12] present a
similar tool which visualizes the developers and artifacts
in a project using a 3D metaphor and give managers an
overview of ongoing activities in the project. With the same
purpose in mind, J. T. Biehl et al. [PS2] present FASTDash,
a user-friendly tool that uses a spatial representation of the
shared code base which highlights team members’ current
activities, allowing a developer to rapidly determine which
team members have source files checked out, which files are
being viewed, and what methods and classes are currently
being changed, providing immediate awareness of potential
conflict situations, such as two programmers editing the
same source file.

B. Bruegge et al. [PS5] present ADAMS, an artefact-based
process support system, supporting permissions definition,
quality management and storing traceability links between
artefacts.

4.4. Knowledge Management. The team members’ experi-
ences, methods, decisions, and skills must be accumu-
lated during the development process through effective
information-sharing mechanisms, so that each team member
can use the experience of his/her predecessor and the
experience of the team accumulated during development,
thus saving costs and time by avoiding redundant work. Dis-
tributed environments must facilitate knowledge sharing by
maintaining a product/process repository focused on well-
understood functionality by linking content from sources
such as e-mail and online discussions, and sharing metadata
information among several tools.

To solve the drawbacks caused by distribution, M. A.
Babar [PS23] proposes the application of an electronic
workspace paradigm to capture and share knowledge to
support the software architecture processes.

H. Zhuge [PS76] presents an approach that works with
a knowledge repository in which information related to
each project is saved by using internet-based communication
tools, thus enabling a new team member to become quickly
experienced by learning the knowledge stored.

K. Mohan and B. Ramesh [PS40] present an approach
based on a traceability framework that identifies the key
knowledge elements which are to be integrated, and a
prototype system that supports the acquisition, integration,
and use of knowledge elements, allowing the knowledge

Advances in Software Engineering 7

fragments stored in diverse environments to be integrated
and used by various stakeholders in order to facilitate a
common understanding.

Change cannot be limited solely to tools, but must
also take place in the organization and role distribution.
Documentation must always be updated and structured to
prevent assumptions and ambiguity, therefore facilitating the
maintainability of the software developed.

4.5. Coordination. Coordination in multisite developments
becomes more difficult in terms of articulation work, as
problems derived from communication, lack of group aware-
ness, and the complexity of the organization appear which
influence the way in which the work must be structured
and managed [PS3]. J. D. Herbsleb et al. [PS22] suggest that
multisite communication and coordination require more
people to participate which causes delays. Large changes
involve multiple sites and greater implementation times.
Changes in multiple distributed sites involve a large number
of people. More progress reports, project reviews, conference
calls, and regular meetings to take corrective action are
therefore needed, thus minimizing task dependencies with
other locations. Collaborative tools must support analysis,
design and development to permit monitoring activities and
managing dependencies, notifications, and implementation
of corrective measures. P. Ovaska et al. [PS47] study the coor-
dination of interdependencies between activities, including
the figure of a chief architect to coordinate the work and
maintain the conceptual integrity of the system.

S. Setamanit et al. [PS59] describe a simulation model
to study different ways in which to configure global software
development processes. Such models, based on empirical
data, allow research into and calculation of the impact of
coordination efficiency and its effects on productivity.

C. R. de Souza et al. [PS63] present the Ariadne tool
which analyzes software projects for dependencies and helps
to find coordination problems through a visual environment.

4.6. Collaboration. Software development is a collaborative
activity in which business analysts, customers, system engi-
neers, architects, and developers interact. The concurrent
edition of models and processes requires synchronous col-
laboration between architects and developers who cannot be
physically present at a common location. Software modeling
requires concurrency control in real time, thus enabling
geographically dispersed developers to edit and discuss the
same diagrams, and improving productivity by providing a
means through which to easily capture and model difficult
concepts through virtual workspaces and the collaborative
edition of artifacts by means of tools which permit synchro-
nized interactions. S. Liu et al. [PS35] present an interesting
approach which can support real-time collaborative UML-
based modeling.

B. Bruegge et al. [PS4] describe SYSIPHUS, a distributed
environment which provides a uniform framework for
system models, collaboration artifacts, and organizational
models, with services for exploring, searching, filtering, and
analyzing the models.

A further approach is presented by J. Suzuki and Y.
Yamamoto [PS16], [PS67] with the SoftDock framework
which solves the issues related to software component
modeling and their relationships, describing and sharing
component models information, and ensuring the integrity
of these models. Developers can therefore work by analyzing,
designing, and developing software from component models
and transfer them by using an exchange format, thus permit-
ting communication between team members. S. Sarkar et al.
[PS57] describe CollabDev, a human assisted collaborative
knowledge tool with which to analyze applications in
multiple languages and render various structural, architec-
tural, and functional insights to the members involved in
maintenance.

J. T. Biehl et al. [PS78] present IMPROMPTU, a frame-
work for collaboration in multiple display environments,
which allows users to share task information through
displays via off-the-shelf applications.

In another direction, X. WenPeng et al. [PS75] study
Galaxy Wiki, an online collaborative tool based on the
wiki concept which permits the existence of a collabora-
tive authoring system for documentation and coordination
purposes, thus allowing developers to compile, execute, and
debug programs in wiki pages.

The most valuable characteristics of these kinds of
tools for an organization are their simplicity, usability,
accessibility, adaptability, and broadband requirements. We
therefore believe that proposals based on the wiki concept
and Intranet web-based environments are more generic and
easier to apply.

4.7. Project and Process Management. High organizational
complexity, scheduling, task assignment, and cost estimation
become more problematic in distributed environments as
a result of volatile requirements, changing specifications,
cultural diversity, and the lack of informal communication
[PS7]. Managers must control the overall development
process, improving it during the enactment and minimizing
any factors that may decrease productivity, taking into
account the possible impact of diverse cultures, identifying
interrelated tasks, and minimizing dependencies among
distributed groups.

The maturity of the process becomes a key success factor.
M. Passivaara and C. Lassenius [PS48] propose incremental
integration and frequent deliveries by following informing
and monitoring practices.

H. Spanjers et al. [PS64] present SoftFab, an infrastruc-
ture which enables projects to automate the building and test
process, and which manages all the tasks remotely though a
control center.

G. Gousios et al. [PS17] propose a model for evaluating
developers’ contributions by combining traditional metrics
with data mined from software repositories to extract
contribution indicators. In the same line, N. Nagappan et al.
[PS43] present a metric scheme to quantify organizational
complexity.

R. J. Madachy [PS38] deals with economic issues,
presenting a set of cost models to estimate distributed teams’

8 Advances in Software Engineering

work, and taking into account different environmental char-
acteristics of the teams, localized labor categories, calendars,
compensation rates, and currencies for costing.

The automation of the process through an adaptable
tool is consequently necessary in order to manage tasks and
metrics through customizable reports managed by a central
server and ensuring the application of the development
processes in compliance with a predefined standard.

4.8. Process Support. Processes should reflect the direct
responsibilities and dependencies between tasks, notifying
the people involved of the changes that concern them,
thus avoiding the information overload of team members.
Process modeling and enactment should support the intersite
coordination and cooperation of the working teams, offering
automated support to distributed project management.
Problems derived from process evolution, mobility, and
tool integration appear within this context. Process engines
have to support changes during enactment. Furthermore,
distributed environments usually involve a large network
of heterogeneous, autonomous and distributed models, and
process engines, which requires the provision of a framework
for process system interoperability.

In relation to these problems, A. Fernández et al. [PS13]
present the SPEARMINT process modeling environment,
which supports extensive capabilities for multiview modeling
and analysis, and XCHIPS for Web-based process support
which permits enactment and simulation functionalities.

S. Setamanit et al. [PS59] describe a hybrid computer
simulation model of software development processes to
study alternative ways in which to configure GSD projects
in order to confront communication problems, control and
coordination problems, process management, and time and
cultural differences.

4.9. Quality and Measurement. The quality of products is
highly influenced by the quality of the processes that support
them. In DSD projects the impact of issues can be magnified
when a problem is discovered, and it is more difficult to
recover from this than in collocated projects. Organizations
should introduce new quality assurance models and mea-
sures to obtain information which can be adapted to the
distributed scenarios, thus ensuring that the requirements
reflect the customer’s needs. One of the most frequently rec-
ommended practices is that of automated code inspections
[PS4] and the application of coding standards. With this aim,
K. V. Siakas and B. Balstrup [PS27] propose the capability
model eSCM-SP, which has many similarities with other
capability-assessment models such as CMMI, Bootstrap or
SPICE, and the SQM-CODE model, and considers the
factors that influence software quality management systems
from a cultural and organizational perspective.

J. D. Herbsleb et al. [PS21] work with several interesting
measures, such as the interdependence measure which allows
the degree of dispersion of work among sites to be deter-
mined by looking up the locations of all the individuals. F.
Lanubile et al. [PS30] similarly propose metrics associated
with products and processes oriented towards software

defects such as: discovery effort, reported defects, defects
density, fixed defects or unfixed defects.

Furthermore, software architecture evaluation usually
involves a large number of stakeholders who need face-to-
face evaluation meetings, and adequate collaborative tools
are therefore needed, such as that proposed by M. A. Babar
et al. [PS56].

We observed a lack of empirical studies that allow us
to enumerate reliable measures, and more articles related to
tests in distributed environments, which are directly related
to software quality, are also necessary.

4.10. Risk Management. Risk management is a critical
project management activity. In addition to all the known
traditional issues connected with collocated environments
[PS7], DSD development includes issues related to coordina-
tion, problem resolution, evolving requirements, knowledge,
sharing and risk identification [14]. Software defects become
more frequent due to the added complexity, and in most
cases, this is related to communication problems and a lack
of group awareness. Defects control must be adapted by
making a greater effort in risk management activities. The
use of adequate measures and the requirements definition is
important key factors.

In an attempt to minimize these problems, F. Lanubile
et al. [PS30] define a process, specifying roles, guidelines,
forms and templates, and describe a web-based tool that
adopts a re-engineered inspection process in order to
minimize synchronous activities and coordination problems
and thus support geographically dispersed teams.

R. Kuni and Navneet Bhushan [PS29] propose the
WOOM methodology to provide measures and facilitate
decision making, taking into account both the risks during
various lifecycle phases and mitigation plans.

Rules and guidelines with which to organize the teams
and their interactions become necessary. Teams must be
continuously controlled in order to detect problems and take
corrective actions.

5. Success Factors

From the experimental studies analyzed, we have extracted
the following success factors of DSD. The primary studies
referenced are listed in the appendix.

(i) Intervention of human resources by participating in
surveys [PS56], [PS21].

(ii) Carrying out improvements based on the needs of the
company, taking into account the technologies and
methodologies used [PS1]. The tools employed at the
present must be adapted and integrated [PS58].

(iii) Training of human resources in the tools and pro-
cesses introduced [PS22].

(iv) Registration of activities with information on pend-
ing issues, errors and people in charge [PS2], and
the provision of awareness of software development
activities [PS65].

Advances in Software Engineering 9

Table 4: Primary studies selected in the systematic review.

Number Year Source Type of study Reference

PS1 2004 Science Direct Use Case [24]

PS2 2007 ACM Use Case [25]

PS3 2006 ACM Use Case [26]

PS4 2006 IEEE Experimental [27]

PS5 2006 IEEE Experimental [28]

PS6 1998 Science Direct Literature review [29]

PS7 2006 IEEE Use Case [30]

PS8 2008 ACM Experimental [31]

PS9 2007 Science Direct Use Case [32]

PS10 2007 Science Direct Use Case [33]

PS11 1999 ACM Nonexperimental [34]

PS12 2008 ACM Experimental [35]

PS13 2004 Wiley Interscience Use Case [36]

PS14 2004 ACM Use Case [37]

PS15 2008 Wiley Interscience Use Case [38]

PS16 1996 Science Direct Experimental [39]

PS17 2008 ACM Experimental [40]

PS18 2006 ACM Use Case [41]

PS19 2008 Science Direct Experimental [42]

PS20 2006 IEEE Experimental [43]

PS21 2000 ACM Survey [44]

PS22 2001 ACM Survey [45]

PS23 2008 ACM Experimental [46]

PS24 2005 ACM Survey [47]

PS25 2008 ACM Experimental [48]

PS26 2006 IEEE Use Case, Survey [49]

PS27 2006 Wiley Interscience Nonexperimental [50]

PS28 2008 Science Direct Use Case [51]

PS29 2006 IEEE Experimental [52]

PS30 2003 Wiley Interscience Use Case [53]

PS31 2006 Science Direct Use Case [54]

PS32 2006 ACM Survey [55]

PS33 2006 ACM Survey [56]

PS34 2006 IEEE Use Case [57]

PS35 2006 IEEE Experimental [58]

PS36 2002 IEEE Use Case [59]

PS37 2008 Wiley Interscience Survey [60]

PS38 2008 Wiley Interscience Nonexperimental [61]

PS39 2008 Wiley Interscience Use Case [62]

PS40 2007 Science Direct Use Case [63]

PS41 2004 Science Direct Use Case [64]

PS42 2007 Science Direct Use Case [65]

PS43 2008 ACM Use Case [66]

PS44 1991 Science Direct Use Case [67]

PS45 2007 Wiley Interscience Use Case [68]

PS46 2008 ACM Experimental [69]

PS47 2003 Wiley Interscience Use Case [70]

PS48 2003 Wiley Interscience Use Case, Survey [71]

PS49 2006 ACM Use Case [72]

10 Advances in Software Engineering

Table 4: Continued.

Number Year Source Type of study Reference

PS50 2004 ACM Literature review [73]

PS51 2003 Wiley Interscience Use Case [74]

PS52 2006 IEEE Use Case [75]

PS53 2007 ACM Use Case [76]

PS54 2005 Science Direct Literature review [77]

PS55 2008 ACM Experimental [78]

PS56 2006 Science Direct Experimental [79]

PS57 2008 ACM Experimental [80]

PS58 2003 ACM Experimental [81]

PS59 2007 Wiley Interscience Simulation [82]

PS60 2004 ACM Experimental [83]

PS61 2006 IEEE Literature review [84]

PS62 2006 Wiley Interscience Use Case [85]

PS63 2007 ACM Experimental [86]

PS64 2006 IEEE Use Case [87]

PS65 2005 ACM Experimental [88]

PS66 1999 IEEE Nonexperimental [89]

PS67 1995 Science Direct Nonexperimental [90]

PS68 2006 Science Direct Experimental [91]

PS69 2006 Science Direct Use Case [92]

PS70 2007 ACM Use Case [93]

PS71 2005 IEEE Nonexperimental [94]

PS72 2008 ACM Experimental [95]

PS73 2004 ACM Use Case [96]

PS74 2006 Science Direct Nonexperimental [97]

PS75 2007 ACM Experimental [98]

PS76 2002 Science Direct Experimental [99]

PS77 2006 ACM Use Case [100]

PS78 2008 ACM Use Case [101]

(v) Establishment of an efficient communication mech-
anism between the members of the organization,
allowing a developer to discover the status and
changes made within each project [PS67], [PS2].

(vi) Using a version control tool in order to control
conflictive situations [PS49].

(vii) There must be a manner in which to permit the
planning and scheduling of distributed tasks, tak-
ing into account costs and dependencies between
projects, and the application of corrective measures
and notifications [PS14], [PS38].

(viii) Application of maturity models and agile method-
ologies [PS32] based on incremental integration and
frequent deliveries.

(ix) Application of MDD approaches to automate devel-
opment tasks [PS64], [PS72].

(x) Systematic use of metrics tailored to the organization
[PS22].

6. Conclusions

In this work we have applied a systematic review method in
order to analyze the literature related to the topic of DSD
within the FABRUM project context whose main objective
is to create a new DSD model with which to manage
the relationships between a planning and design center
and a software production factory. This work serves as a
starting point from which to establish the issues upon which
subsequent research will be focused.

The results obtained from this systematic review have
allowed us to obtain a global vision of a relatively new
topic which should be investigated in detail. However, every
organization has concrete needs which basically depend on
its distribution characteristics, its activity and the tools it
employs. These factors therefore cause this subject to be
extremely wide-ranging, and lead to the necessity of adapting
both the technical and organizational procedures, according
to each organization’s specific needs.

The proposals found in the analyzed studies were, in
general, mainly concerned with improvements related to
the use of collaborative tools, the integration of existing

Advances in Software Engineering 11

tools, source code control, or the use of collaborative agents.
Moreover, it should be stressed that the evaluation of the
results obtained from the proposed improvements are often
based on studies in a single organization, and sometimes only
takes into account the developers’ subjective perception.

On the other hand, it should be noted that maturity
models such as CMM, CMMI, or ISO, which would be of
particular relevance to the present investigation, represent
only 17% of all analyzed works. The fact that almost
all the experimental studies that employed CMMI and
CMM applied a maturity level of 2 suggests that the
cost of implementing higher maturity levels in distributed
environments might be too high. However, there is a need
for more studies related to the application of maturity
models and metrics to quantify issues related to the process
areas. The application of agile methodologies based on
incremental integration and frequent deliveries, and fre-
quent reviews of problems to adjust the process become
important success factors. We also found an increasing
interest in modeling in software development, and MDA
approaches as a means to improve productivity, quality and
understanding among members involved in the development
process.

Finally, we must emphasize that the search was reduced
to a limited number of search engines and excluded studies
which addressed the subject of DSD but did not contribute
any significant method or improvement in this research
context. However, since this is such a wide area, some
of these works present interesting parallel subjects for the
development of this investigation, and their study would,
therefore, be important in a future work. We also have
found studies related to the business perspective or focused
on the customer which may be useful for related works.
Furthermore, many studies mainly related to tools which are
not included in the context of DSD but are useful in fields
related to communications or source control also exist.

Appendix

A. Primary Studies Selected

The selected primary studies in the systematic review are
presented in Table 4.

Acknowledgments

The authors acknowledge the assistance of MELISA Project
(PAC08-0142-3315), financed by the “Junta de Comunidades
de Castilla-La Mancha” of Spain. This work is part of
FABRUM Project (PPT-430000-2008-63), financed by “Min-
isterio de Ciencia e Innovación” of Spain and by Alhambra-
Eidos (http://www.alhambra-eidos.es/).

References

[1] W. Aspray, F. Mayadas, and M. Y. Vardi, “Globalization and
offshoring of software,” Report of the ACM Job Migration
Task Force, Association for Computing Machinery, New
York, NY, USA, 2006.

[2] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi,
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools, John Wiley & Sons, New
York, NY, USA, 2004.

[3] R. Davison, “Offshoring information technology: sourcing
and outsourcing to a global workforce,” Information Technol-
ogy for Development, vol. 13, no. 1, pp. 101–102, 2007.

[4] R. Prikladnicki, D. Damian, and J. L. N. Audy, “Patterns
of evolution in the practice of distributed software devel-
opment: quantitative results from a systematic review,”
in Proceedings of the 12th Conference on Evaluation and
Assessment in Software Engineering (EASE ’08), Bari, Italy,
June 2008.

[5] R. Prikladnicki, J. L. N. Audy, and J. R. Evaristo, “Distributed
software development: toward an understanding of the
relationship between project team, users and customers,”
in Proceedings of the 5th International Conference on Enter-
prise Information Systems (ICEIS ’03), pp. 417–423, Angers,
France, April 2003.

[6] J. D. Herbsleb and D. Moitra, “Global software development,”
IEEE Software, vol. 18, no. 2, pp. 16–20, 2001.

[7] W. Kobitzsch, D. Rombach, and R. L. Feldmann, “Outsourc-
ing in India,” IEEE Software, vol. 18, no. 2, pp. 78–86, 2001.

[8] C. Ebert and P. De Neve, “Surviving global software develop-
ment,” IEEE Software, vol. 18, no. 2, pp. 62–69, 2001.

[9] L. Layman, L. Williams, D. Damian, and H. Bures, “Essential
communication practices for extreme programming in a
global software development team,” Information and Software
Technology, vol. 48, no. 9, pp. 781–794, 2006.

[10] S. Krishna, S. Sahay, and G. Walsham, “Managing cross-
cultural issues in global software outsourcing,” Communica-
tions of the ACM, vol. 47, no. 4, pp. 62–66, 2004.

[11] S. McConnell, Rapid Development: Taming Wild Software
Schedules, Microsoft Press, Redmond, Wash, USA, 1996.

[12] D. Damian, F. Lanubile, and H. L. Oppenheimer, “Addressing
the challenges of software industry globalization: the work-
shop on global software development,” in Proceedings of the
25th International Conference on Software Engineering, pp.
793–794, Portland, Ore, USA, May 2003.

[13] D. Damian and F. Lanubile, “The 3rd international workshop
on global software development,” in Proceedings of the 26th
International Conference on Software Engineering (ICSE ’04),
pp. 756–757, Edinburgh, UK, May 2004.

[14] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and J.
Kazmeier, Global Software Development Handbook, Auerbach
Series on Applied Software Engineering Series, Auerbach,
Boston, Mass, USA, 2006.

[15] M. A. Cusumano, “Managing software development in
globally distributed teams,” Communications of the ACM, vol.
51, no. 2, pp. 15–17, 2008.

[16] OMG, “MDA guide version 1.0.1,” Tech. Rep. omg/2003-06-
01, Object Management Group, Needham, Mass, USA, June
2003.

[17] L. Kutvonen, “Relating MDA and inter-enterprise collabora-
tion management,” in Proceedings of the 2nd European Work-
shop on Model Driven Architecture (MDA) with an Emphasis
on Methodologies and Transformations (EWMDA ’04), pp. 84–
88, University of Kent, Canterbury, UK, September 2004.

[18] J. L. Garrido, M. Noguera, M. González, M. V. Hurtado, and
M. L. Rodrı́guez, “Definition and use of computation inde-
pendent models in an MDA-based groupware development
process,” Science of Computer Programming, vol. 66, no. 1, pp.
25–43, 2007.

12 Advances in Software Engineering

[19] R. S. P. Maciel, C. G. Ferraz, and N. S. Rosa, “An MDA
domain specific architecture to provide interoperability
among collaborative environments,” in Proceedings of the
19th Brazilian Symposium on Software Engineering (SBES
’05), pp. 1–16, Uberlandia, Brazil, October 2005.

[20] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Tech.
Rep. EBSE-2007-001, Keele University & Durham University
Joint Report, Staffordshire, UK, 2007.

[21] F. J. Pino, F. Garcı́a, and M. Piattini, “Software process
improvement in small and medium software enterprises: a
systematic review,” Software Quality Journal, vol. 16, no. 2,
pp. 237–261, 2008.

[22] M. V. Zelkowitz and D. R. Wallace, “Experimental models for
validating technology,” Computer, vol. 31, no. 5, pp. 23–31,
1998.

[23] ISO/IEC 12207:2002, “AMENDMENT 1: Information
technology—Software life cycle processes,” International
Organization for Standardization, 2002.

[24] M. Akmanligil and P. C. Palvia, “Strategies for global infor-
mation systems development,” Information & Management,
vol. 42, no. 1, pp. 45–59, 2004.

[25] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“FASTDash: a visual dashboard for fostering awareness in
software teams,” in Proceedings of the 25th SIGCHI Conference
on Human Factors in Computing Systems (CHI ’07), pp. 1313–
1322, San Jose, Calif, USA, April 2007.

[26] B. Brian, “Impact of organizational structure on distributed
requirements engineering processes: lessons learned,” in
Proceedings of the International Workshop on Global Software
Development for the Practitioner (GSD ’06), Shanghai, China,
May 2006.

[27] B. Bruegge, A. H. Dutoit, and T. Wolf, “Sysiphus: enabling
informal collaboration in global software development,” in
Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE ’06), pp. 139–148, Florianop-
olis, Brazil, October 2006.

[28] B. Bruegge, A. De Lucia, F. Fasano, and G. Tortora, “Support-
ing distributed software development with fine-grained arte-
fact management,” in Proceedings of the IEEE International
Conference on Global Software Engineering (ICGSE ’06), pp.
213–222, Florianopolis, Brazil, October 2006.

[29] J. M. Carey, “Creating global software: a conspectus and
review,” Interacting with Computers, vol. 9, no. 4, pp. 449–
465, 1998.

[30] V. Casey and I. Richardson, “Project management within vir-
tual software teams,” in Proceedings of the IEEE International
Conference on Global Software Engineering (ICGSE ’06), pp.
33–42, Florianopolis, Brazil, October 2006.

[31] V. Clerc, “Towards architectural knowledge management
practices for global software development,” in Proceedings
of the 3rd International Workshop on Sharing and Reusing
Architectural Knowledge (SHARK ’08), Leipzig, Germany,
May 2008.

[32] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. Howi-
son, “Self-organization of teams for free/libre open source
software development,” Information and Software Technology,
vol. 49, no. 6, pp. 564–575, 2007.

[33] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora,
“Enhancing collaborative synchronous UML modelling with
fine-grained versioning of software artefacts,” Journal of
Visual Languages and Computing, vol. 18, no. 5, pp. 492–503,
2007.

[34] S. E. Dossick and G. E. Kaiser, “CHIME: a metadata-based
distributed software development environment,” in Proceed-
ings of the 7th European Software Engineering Conference, held
jointly with the 7th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, Toulouse, France,
September 1999.

[35] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, A. van der
Hoek, and D. Redmiles, “Continuous coordination within
the context of cooperative and human aspects of software
engineering,” in Proceedings of the International Workshop
on Cooperative and Human Aspects of Software Engineering
(CHASE ’08), Leipzig, Germany, May 2008.

[36] A. Fernández, B. Garzaldeen, I. Grützner, and J. Münch,
“Guided support for collaborative modeling, enactment and
simulation of software development processes,” Software
Process: Improvement and Practice, vol. 9, no. 2, pp. 95–106,
2004.

[37] J. Froehlich and P. Dourish, “Unifying artifacts and activities
in a visual tool for distributed software development teams,”
in Proceedings of the 26th International Conference on Software
Engineering (ICSE ’04), vol. 26, pp. 387–396, Edinburgh, UK,
May 2004.

[38] P. J. Gomes and N. R. Joglekar, “Linking modularity with
problem solving and coordination efforts,” Managerial and
Decision Economics, vol. 29, no. 5, pp. 443–457, 2008.

[39] I. Gorton and S. Motwani, “Issues in co-operative software
engineering using globally distributed teams,” Information
and Software Technology, vol. 38, no. 10, pp. 647–655, 1996.

[40] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring
developer contribution from software repository data,” in
Proceedings of the International Working Conference on Min-
ing Software Repositories, pp. 129–132, Leipzig, Germany,
2008.

[41] C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg,
“Designing task visualizations to support the coordination
of work in software development,” in Proceedings of the
20th Anniversary ACM Conference on Computer Supported
Cooperative Work (CSCW ’06), pp. 39–48, Banff, Canada,
November 2006.

[42] B. Hanks, “Empirical evaluation of distributed pair program-
ming,” International Journal of Human Computer Studies, vol.
66, no. 7, pp. 530–544, 2008.

[43] T. Heistracher, T. Kurz, G. Marcon, and C. Masuch, “Col-
laborative software engineering with a digital ecosystem,” in
Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE ’06), pp. 119–123, Florianop-
olis, Brazil, October 2006.

[44] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“Distance, dependencies, and delay in a global collabora-
tion,” in Proceedings of the ACM Conference on Computer
Supported Cooperative Work, pp. 319–328, Philadelphia, Pa,
USA, December 2000.

[45] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“An empirical study of global software development: distance
and speed,” in Proceedings of the 23rd International Conference
on Software Engineering, pp. 81–90, Toronto, Canada, May
2001.

[46] M. Ali-Babar, “The application of knowledge-sharing
workspace paradigm for software architecture processes,” in
Proceedings of the 3rd International Workshop on Sharing
and Reusing Architectural Knowledge (SHARK ’08), Leipzig,
Germany, May 2008.

[47] J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software
development at Siemens: experience from nine project,” in

Advances in Software Engineering 13

Proceedings of the 27th International Conference on Software
Engineering (ICSE ’05), pp. 524–533, St. Louis, Mo, USA, May
2005.

[48] R. Holmes and R. J. Walker, “Promoting developer-specific
awareness,” in Proceedings of the International Workshop
on Cooperative and Human Aspects of Software Engineering
(CHASE ’08), Leipzig, Germany, May 2008.

[49] H. Holmstrom, E. Ó. Conchúir, P. J. Ågerfalk, and B. Fitzger-
ald, “Global software development challenges: a case study
on temporal, geographical and socio-cultural distance,” in
Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE ’06), pp. 3–11, Florianopolis,
Brazil, October 2006.

[50] K. V. Siakas and B. Balstrup, “Software outsourcing quality
achieved by global virtual collaboration,” Software Process:
Improvement and Practice, vol. 11, no. 3, pp. 319–328, 2006.

[51] J. Kotlarsky, P. C. van Fenema, and L. P. Willcocks, “Develop-
ing a knowledge-based perspective on coordination: the case
of global software projects,” Information and Management,
vol. 45, no. 2, pp. 96–108, 2008.

[52] R. Kuni and N. Bhushan, “IT application assessment model
for global software development,” in Proceedings of the
IEEE International Conference on Global Software Engineering
(ICGSE ’06), pp. 92–100, Florianopolis, Brazil, October 2006.

[53] F. Lanubile, T. Mallardo, and F. Calefato, “Tool support for
geographically dispersed inspection teams,” Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 217–231, 2003.

[54] L. Layman, L. Williams, D. Damian, and H. Bures, “Essential
communication practices for Extreme Programming in a
global software development team,” Information and Software
Technology, vol. 48, no. 9, pp. 781–794, 2006.

[55] G. Lee, W. DeLone, and J. A. Espinosa, “Ambidextrous cop-
ing strategies in globally distributed software development
projects,” Communications of the ACM, vol. 49, no. 10, pp.
35–40, 2006.

[56] E. Lindqvist, B. Lundell, and B. Lings, “Distributed develop-
ment in an intra-national, intra-organisational context: an
experience report,” in Proceedings of the International Work-
shop on Global Software Development for the Practitioner,
Shanghai, China, May 2006.

[57] G. N. Aranda, A. Vizcaı́no, A. Cechich, M. Piattini, and J. J.
Castro-Sáchez, “Cognitive-based rules as a means to select
suitable groupware tools,” in Proceedings of the 5th IEEE
International Conference on Cognitive Informatics, vol. 1, pp.
418–423, Beijing, China, July 2006.

[58] S. Liu, Y. Zheng, H. Shen, S. Xia, and C. Sun, “Real-time
collaborative software modeling using UML with rational
software architect,” in Proceedings of the International Con-
ference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom ’06), Atlanta, Ga, USA,
November 2006.

[59] W. J. Lloyd, M. B. Rosson, and J. D. Arthur, “Effectiveness
of elicitation techniques in distributed requirements engi-
neering,” in Proceedings of the 10th Anniversary Joint IEEE
International Requirements Engineering Conference (RE ’02),
Essen, Germany, September 2002.

[60] J. Ma, J. Li, W. Chen, R. Conradi, J. Ji, and C. Liu, “A state-
of-the-practice study on communication and coordination
between Chinese software suppliers and their global out-
sourcers,” Software Process: Improvement and Practice, vol. 13,
no. 3, pp. 233–247, 2008.

[61] R. J. Madachy, “Cost modeling of distributed team processes
for global development and software-intensive systems of

systems,” Software Process: Improvement and Practice, vol. 13,
no. 1, pp. 51–61, 2008.

[62] N. B. Moe and D. Šmite, “Understanding a lack of trust
in global software teams: a multiple-case study,” Software
Process: Improvement and Practice, vol. 13, no. 3, pp. 217–231,
2008.

[63] K. Mohan and B. Ramesh, “Traceability-based knowledge
integration in group decision and negotiation activities,”
Decision Support Systems, vol. 43, no. 3, pp. 968–989, 2007.

[64] J. Van Moll, J. Jacobs, R. Kusters, and J. Trienekens, “Defect
detection oriented lifecycle modeling in complex product
development,” Information and Software Technology, vol. 46,
no. 10, pp. 665–675, 2004.

[65] B. E. Munkvold and I. Zigurs, “Process and technology
challenges in swift-starting virtual teams,” Information and
Management, vol. 44, no. 3, pp. 287–299, 2007.

[66] N. Nagappan, B. Murphy, and V. R. Basili, “The influence
of organizational structure on software quality: an empirical
case study,” in Proceedings of the 30th International Conference
on Software Engineering (ICSE ’08), pp. 521–530, Leipzig,
Germany, May 2008.

[67] K. Narayanaswamy and N. M. Goldman, “A flexible frame-
work for cooperative distributed software development,” The
Journal of Systems and Software, vol. 16, no. 2, pp. 97–105,
1991.

[68] R. M. De Araujo and M. R. S. Borges, “The role of collabo-
rative support to promote participation and commitment in
software development teams,” Software Process: Improvement
and Practice, vol. 12, no. 3, pp. 229–246, 2007.

[69] R. J. Ocker and J. Fjermestad, “Communication differences in
virtual design teams: findings from a multi-method analysis
of high and low performing experimental teams,” ACM
SIGMIS Database, vol. 39, no. 1, pp. 51–67, 2008.

[70] P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as
a coordination tool in multi-site software development,”
Software Process: Improvement and Practice, vol. 8, no. 4, pp.
233–247, 2003.

[71] M. Paasivaara and C. Lassenius, “Collaboration practices in
global inter-organizational software development projects,”
Software Process: Improvement and Practice, vol. 8, no. 4, pp.
183–199, 2003.

[72] L. Pilatti, J. L. N. Audy, and R. Prikladnicki, “Software
configuration management over a global software develop-
ment environment: lessons learned from a case study,” in
Proceedings of the International Workshop on Global Software
Development for the Practitioner (GSD ’06), Shanghai, China,
May 2006.

[73] A. Powell, G. Piccoli, and B. Ives, “Virtual teams: a review of
current literature and directions for future research,” ACM
SIGMIS Database, vol. 35, no. 1, pp. 6–23, 2004.

[74] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “Global
software development in practice lessons learned,” Software
Process: Improvement and Practice, vol. 8, no. 4, pp. 267–281,
2003.

[75] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “A reference
model for global software development: findings from a case
study,” in Proceedings of the IEEE International Conference
on Global Software Engineering (ICGSE ’06), pp. 18–28,
Florianopolis, Brazil, October 2006.

[76] N. Ramasubbu and R. K. Balan, “Globally distributed
software development project performance: an empirical
analysis,” in Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM

14 Advances in Software Engineering

SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’07), pp. 125–134, Dubrovnik, Yugoslavia,
September 2007.

[77] S. Sakthivel, “Virtual workgroups in offshore systems devel-
opment,” Information and Software Technology, vol. 47, no. 5,
pp. 305–318, 2005.

[78] R. S. Sangwan and J. Ros, “Architecture leadership and
management in globally distributed software development,”
in Proceedings of the 1st International Workshop on Leadership
and Management in Software Architecture, pp. 17–21, Leipzig,
Germany, May 2008.

[79] M. A. Babar, B. Kitchenham, L. Zhu, I. Gorton, and R. Jeffery,
“An empirical study of groupware support for distributed
software architecture evaluation process,” Journal of Systems
and Software, vol. 79, no. 7, pp. 912–925, 2006.

[80] S. Sarkar, R. Sindhgatta, and K. Pooloth, “A collaborative
platform for application knowledge management in software
maintenance projects,” in Proceedings of the 1st Bangalore
Annual Compute Conference, Bangalore, India, January 2008.

[81] A. Sarma, Z. Noroozi, and A. Van der Hoek, “Palantı́r: raising
awareness among configuration management workspaces,”
in Proceedings of the 25th International Conference on Software
Engineering, pp. 444–454, Portland, Ore, USA, May 2003.

[82] S.-O. Setamanit, W. Wakeland, and D. Raffo, “Using simula-
tion to evaluate global software development task allocation
strategies,” Software Process: Improvement and Practice, vol.
12, no. 5, pp. 491–503, 2007.

[83] N. S. Shami, N. Bos, Z. Wright, et al., “An experimental
simulation of multi-site software development,” in Proceed-
ings of the Conference of the Centre for Advanced Studies on
Collaborative Research, Markham, Canada, October 2004.

[84] B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for
distributed software development,” in Proceedings of the 28th
International Conference on Software Engineering (ICSE ’06),
pp. 731–740, Shanghai, China, May 2006.

[85] D. Šmite, “Global software development projects in one of
the biggest companies in Latvia: is geographical distribution
a problem?” Software Process: Improvement and Practice, vol.
11, no. 1, pp. 61–76, 2006.

[86] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles,
“Supporting collaborative software development through the
visualization of socio-technical dependencies,” in Proceedings
of the International ACM Conference on Supporting Group
Work, pp. 147–156, Sanibel Island, Fla, USA, 2007.

[87] H. Spanjers, M. ter Huurne, B. Graaf, M. Lormans, D.
Bendas, and R. van Solingen, “Tool support for distributed
software engineering,” in Proceedings of the IEEE Interna-
tional Conference on Global Software Engineering (ICGSE ’06),
pp. 187–198, Florianopolis, Brazil, October 2006.

[88] M.-A. D. Storey, D. Čubranić, and D. M. German, “On the
use of visualization to support awareness of human activities
in software development: a survey and a framework,” in
Proceedings of the ACM Symposium on Software Visualization
(SoftVis ’05), pp. 193–202, St. Louis, Mo, USA, May 2005.

[89] J. Suzuki and Y. Yamamoto, “SoftDock: a distributed collab-
orative platform for model-based software development,” in
Proceedings of the 10th International Workshop on Database
and Expert Systems Applications (DEXA ’99), Florence, Italy,
September 1999.

[90] M. Baentsch, G. Molter, and P. Sturm, “WebMake: inte-
grating distributed software development in a structure-
enhanced Web,” Computer Networks and ISDN Systems, vol.
27, no. 6, pp. 789–800, 1995.

[91] Y. Tamura, S. Yamada, and M. Kimura, “A reliability assess-
ment tool for distributed software development environment
based on Java and J/Link,” European Journal of Operational
Research, vol. 175, no. 1, pp. 435–445, 2006.

[92] L. Taxén, “An integration centric approach for the coor-
dination of distributed software development projects,”
Information and Software Technology, vol. 48, no. 9, pp. 767–
780, 2006.

[93] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin,
“Communication tools for distributed software development
teams,” in Proceedings of the ACM SIGMIS CPR Conference:
The Global Information Technology Workforce, pp. 28–35,
Saint Louis, Mo, USA, April 2007.

[94] P. F. Tiako, “Collaborative approach for modeling and
performing mobile software process components,” in Pro-
ceedings of the International Symposium on Collaborative
Technologies and Systems, pp. 40–47, Saint Louis, Mo, USA,
May 2005.

[95] S. Vale and S. Hammoudi, “Towards context independence in
distributed context-aware applications by the model driven
approach,” in Proceedings of the 3rd International Workshop
on Services Integration in Pervasive Environments, Sorrento,
Italy, July 2008.

[96] P. Wongthongtham, E. Chang, and T. S. Dillon, “Ontology-
based multi-agent system to multi-site software develop-
ment,” in Proceedings of the Workshop on Quantitative
Techniques for Software Agile Process, Newport Beach, Calif,
USA, November 2004.

[97] P. Wongthongtham, E. Chang, T. S. Dillon, and I. Som-
merville, “Ontology-based multi-site software development
methodology and tools,” Journal of Systems Architecture, vol.
52, no. 11, pp. 640–653, 2006.

[98] W. Xiao, C. Chi, and M. Yang, “On-line collaborative
software development via wiki,” in Proceedings of the Interna-
tional Symposium on Wikis, pp. 177–183, Montreal, Canada,
October 2007.

[99] H. Zhuge, “Knowledge flow management for distributed
team software development,” Knowledge-Based Systems, vol.
15, no. 8, pp. 465–471, 2002.

[100] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?” Communications of the
ACM, vol. 49, no. 10, pp. 41–46, 2006.

[101] J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M. Inkpen,
and M. Czerwinski, “IMPROMPTU: a new interaction
framework for supporting collaboration in multiple display
environments and its field evaluation for co-located software
development,” in Proceedings of the 26th Annual SIGCHI
Conference on Human Factors in Computing Systems, pp. 939–
948, Florence, Italy, April 2008.

